Exploring Open Source GIS Programming

Scott Parker, Katie Urey, Jack Newlevant, Mele Sax-Barnett

When to write a program

- When you expect your tool to have multiple uses and/or multiple iterations
- Something new or different that has to be fast, precise, accurate, reliable
- Need to match the user's model

When to write a program

What is open source?

- Usually free to use
- Code base publicly available, public encouraged to contribute
- Can just use it, or also write code to make it better or fit your application
- Open source is not the same as open data

When to use open source

- When the overhead of acquiring expensive tools is high
 - Ideal for community groups
- When you don't want to explain what you're doing or ask for permission to do a unique project
- When you need to know how everything works

Community GIS Examples

There are no route to any shelter

Do you need maps?

Are you embroiled in an cartographic dispute? Do you disagree with the official version of your geography?..

This community began as the <u>Grassroots Mapping project</u>, an effort to produce Do-It-Yourself satellite imagery <u>with balloons and kites</u>, most notably during the **2010 BP oil spill.** We are now broadening our scope to explore new inexpensive and community-led means to measure and explore environmental and social issues

Programming in open source

Benefits

- Full control if desired
- Structure for collaboration
- Richer toolbox
- Multi platform
- Programming skills you will develop have broad application

Disadvantages

- Time & cost to learn and maintain development environment
- Requires more general purpose programming skills

Open source GIS tools

- GRASS Desktop GIS
- QGIS Desktop GIS
- PostGIS Spatial relational database management system +
- OpenStreetMap Open spatial data

Bonus: they all play well together!

GRASS

Quantum GIS

Toggles the editing state of the current layer

PostGIS

000		pgAdmin III					
🎽 🧭 💼 💁 🐼 🔎 🛄 🔩	2 🙀 · 🛛 🥺 ?						
Object browser	Properties Statistics Depende	dencies Dependents	Ŧ				
🔻 📄 Server Groups	Column Owner		-				
🔻 📄 Servers (1)	🗐 area	Query – osm_331 on postgres@localhost:5432 *	Т				
PostgreSQL 9.1 (localhost:5432)	🗐 barrier	👔 📂 🔚 🐰 🗐 ங 🖉 🀬 🍖 🎤 🕨 🎼 🎘 🕲 🏣 😁 🍟 🔋 🗀 osm_331 on postgres@localhost:5432					
🔻 📄 Databases (7)	🔋 bicycle	SQL Editor Graphical Query Builder	1				
🔀 osm	🗐 brand	Previous queries	I.				
▼ 间 osm_331	📃 bridge	select highway, maxspeed, name	ľ				
Katalogs (2)	boundary	from planet_osm_line					
Extensions (1)		<pre>where cycleway = 'shared_lane'</pre>					
🔻 혱 Schemas (1)							
🔻 📀 public							
Collations (0)	cutting						
🏠 Domains (0)	cycleway						
FTS Configurations (0)	cycleway:left	Cutout nane					
FTS Dictionaries (0)	cycleway:right	Data Output Evalain Mersages History					
🗟 FTS Parsers (0)							
FTS Templates (0)	SQL pane	highway maxspeed name					
 Functions (780) 		20 residential wortheast couch street					
🗞 Sequences (0)		21 tertiary Z5 mph Southeast Lincoln Street					
🔻 🔚 Tables (6)		22 tertiary 25 mph Southeast Clinton Street					
geometry_columns		22 residential 25 mph Northeast Alameda Street					
🔻 📻 planet_osm_line		zs residential Northeast Alch Avenue					
🕨 <u>ि</u> Columns (76)		24 residential Northeast 41st Avenue					
► Constraints (0)		25 residential Northeast 41st Avenue					
🕨 🛅 Indexes (1)		26 residential Northeast Davis Street					
🗠 Rules (0)		27 residential Southeast 41st Avenue					
		OK. Unix Ln 3, Col 39, Ch 85 348 rows. 817 ms					

OpenStreetMap: open data

OpenStreetMap: open data

OpenStreetMap: open data

Example App: Curb ramp inventory

- Task: Create a mobile-friendly website that can be used by volunteers to do a curb ramp inventory
 - Free or very low cost
- Tools:
 - PostGIS
 - CartoDB
 - OpenLayers
 - HTML, javascript, jQuery, CSS

Step 1: Prepare dataset

- We had previously generated a walkway network from a street centerline file that included crosswalks, but what we needed was corners
- So, how do you turn this:

... into this?

... without ArcGIS?

Step 1: Prepare dataset

- Answer: With PostGIS!
- PostGIS not only manages your spatial data, it can run a number of really useful spatial functions very quickly
- All you have to do is write up some SQL
- ...and reuse it whenever you want!

7.8. Spatial Relationships and Measurements

- ST_Area Returns the area of the surface if it is a polygon or multi-polygon. For "geometry" type area is in SRID units. For "geography" area is in square meters.
- $\ensuremath{\mathsf{ST}}\xspace_{Azimuth}$ Returns the angle in radians from the horizontal of the vector defined by pointA and pointB
- ST_Centroid Returns the geometric center of a geometry.
- ST_ClosestPoint Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.
- ST_Contains Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.
- ST_ContainsProperly Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.
- ST_Covers Returns 1 (TRUE) if no point in Geometry B is outside Geometry A. For geography: if geography point B is not outside Polygon Geography A ST_CoveredBy - Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B
- ST_Crosses Returns TRUE if the supplied geometries have some, but not all, interior points in common.
- ST_LineCrossingDirection Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing.
- ST_Disjoint Returns TRUE if the Geometries do not "spatially intersect" if they do not share any space together.
- ST_Distance For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units. For geography type defaults to return spheroidal minimum distance between two geographies in meters.
- ST_HausdorffDistance Returns the Hausdorff distance between two geometries. Basically a measure of how similar or dissimilar 2 geometries are. Units are in the units of the spatial reference system of the geometries.

Step 1: Prepare dataset

- SQL is easy to learn
- PostGIS/PostgreSQL has great documentation and a broad user base
- This code creates a new table, then does an inner join of the crosswalk segments, using the function ST_StartPoint() to get the geometry of the point where the second of two touching crosswalks begins
- Finally, it brings in street names from a related table to give you a corner of X street and Y way

```
create table public.corner_pts (
6
        id serial primary key,
        intersection_id bigint,
        fm_bearing int,
10
        st_left_id bigint,
11
        st_right_id bigint,
12
        st_left_name text,
        st_right_name text,
13
14
        alignment text,
15
        the_geom geometry
16
    );
17
18
    INSERT INTO public.corner_pts (intersection_id, fm_bearing,
19
        st_left_id, st_right_id, alignment, the_geom)
20
    SELECT DISTINCT
21
        c1.to_end_id as intersection_id,
22
        c1.fm_bearing,
23
        c1.to_join_id as st_left_id,
        c1.street_seg as st_right_id,
24
25
        c1.alignment,
26
        ST_StartPoint(c1.the_geom)
27
    FROM public.corners c1, public.corners c2
    where (c1.street_seg= c2.to_join_ID ---and c1.to_end_id=39265
28
29
    );
30
  update public.corner_pts set st_right_name = s.full_name
31
32 from public."Streets_pdx" s
33 where st_right_id = s.localid;
34
    update public.corner_pts set st_left_name = s.full_name
35
36
    from public."Streets_pdx" s
    where st_left_id = s.localid;
37
```

Creating SQL for PostGIS

Write your code in a text editor of your choice and paste it in the query window, or use the Graphical Query Builder

	⊖ O Query – osm_331 on postgres@localhost:5432					
O Query - osm_331 on postgres@localhost:5432	🗄 🗅 🚰 🖶 🐰 🛍 🚔 🖉 🧄 🧟 🔎 🕨 🎼 🏣 🞥 💷 🏆 🕴 🗆 osm_331 on postgres@localhost:5432					
Sol Editor Craphical Ounce Builder	SQL Editor Graphical Query Builder					
SQL Editor Graphical Query Builder Previous queries UPDATE planet_osm_line SET ‡ Delete Delete All UPDATE planet_osm_line SET ok = 'n' WHERE (bicycle = 'designated' AND (highway \$\circ\$ 'path' AND highway \$\circ\$ 'cycleway') AND ('RLIS:bicycle' \$\circ\$ 'caution_area' AND 'Cycleway \$\circ\$ 'opposite_lane' AND cycleway \$\circ\$ 'opposite_track' AND cycleway \$\circ\$ 'shared_lane' AND cycleway \$\circ\$ 'share_busway')); Output pane Data Output Explain	▼ ○ osm_331 ▶ ⊗ Catalogs ▼ ⊗ Schemas ▼ ⊗ public □ geography_columns □ geometry_columns □ geometry_columns □ glanet_osm_line □ planet_osm_point □ planet_osm_polygon □ planet_osm_roads □ spatial_ref_sys					
ready Unix Ln 1, Col 1, Ch 1	Columns Criteria Ordering Joins Available Columns Image: Column of the co					

Step 2: Host the data

- There are many ways to display geographic data online, though you have two main options:
 - Tile your data or otherwise turn it into images
 - Host the data itself, making it truly interactive
 - With either, you can host data in the cloud or on your own web server
- Though affordable and easy open source options like MapBox & TileMill could provide some interactivity, a new tool called CartoDB was recently released that offered us exactly what we needed
- CartoDB = PostGIS in the cloud

CartoDB web interface

						CARTO	DB			
14 rows	match	ning your quer				Corne edit tags	rs 💷			
This query to	ook 0.002	seconds				Table	Мар	SHARE THIS MAP		
Table	Мар	SHARE THIS MAP				Map type Roadma	• •	Visualization type Carto	Infowindow customization Custom	\odot
id Unknown	T	Intersecti Unknown	fm_bearing Unknown	st_left_id v Unknown	st_rt_id 💌	st, + Un	400	NE Going St	€60 ● ● ● ● 50	460 • • •
	Add v	our custom SQL o	uerv		x.		z		z	NE Rodn
3059	You can check ou	free move or close this wi ut this reference. Protip: Al	bout PostGIS	NI	Williams A		E Cleveland /	ey Ave		
3037	SELE	CT * FROM corners v		NI	ve		Ave			
3260				NE GOING	ST	NE CLEVE				
3262				NE GOING S		NE RODN				
3261	5	<u></u>		Clear view	apply query	NE RODNE	Y	NE GOING		
3258					1.	NE GOING ST		NE CLEVE		
3272		38914	137	107625	108029	NE GOING	ST	NE MALLC		
3290		38932	47	107856	107675	NE 6TH AV	E	NE GOING		

Step 3: Choose a web mapping library

OpenLayers

Leaflet

OpenLayers: Free Maps for the Web

Home Extensions Repository API Docs

m odest Maps is a small, extensible, and free library for designers and developers who want to use interactive maps in their own projects. It provides a core set of features in a tight, clean package with plenty of hooks for additional functionality.

A Modern, Lightweight Open-Source JavaScript Library for Interactive Maps by <u>CloudMade</u>

Step 3: Choose a web mapping library

- I chose OpenLayers, since I was familiar with an example for mobile devices with most of the functionality I needed -- included start up HTML, javascript, jQuery, and CSS
- OpenLayers is powerful and well-established, but Leaflet or other libraries may have worked well too

Step 4: Try to make it all work together

- Telling OpenLayers how to talk to CartoDB
 - Map no examples

```
var cartoDB = new OpenLayers.Layer.Vector("Corners", {
   projection: gg,
   strategies: [new OpenLayers.Strategy.BBOX(),
        new OpenLayers.Strategy.Refresh({interval: 60000, force: true})],
       protocol: new OpenLayers.Protocol.Script({
       url: "http://pdxmele.cartodb.com/api/v2/sql",
        params: ·
            q: "select * from corners where evaluated is null",
            format:"geojson"
        },
        format: new OpenLayers.Format.GeoJSON({
            ignoreExtraDims: true
        }),
        callbackKey: "callback"
   })
}):
```


+

Ask for help!

Step 4: Try to make it all work together

• Data

- Populating forms
- Sending forms
- Ask for help!

<script>

//this function sends the form info to CartoDB
function processCornerForm() {

//grab the information from the form
var id = document.getElementById("cornerID").
 innerHTML;
var number = document.cornerForm.number.value;
var condition = document.cornerForm.condition.value;
var slope = document.cornerForm.slope.value;

//put together the query

var query = "q=UPDATE corners SET evaluated = 'y', number = '"+number+"', condition = '"+condition+" ', slope = '"+slope+"' where id = '"+id+" '&api_key=x";

```
//for debugging
//alert(query);
//document.getElementById("querytest").innerHTML =
query;
```

//post the query!
\$.post("http://pdxmele.cartodb.com/api/v2/sql", query
, alert ("Successfully posted to database"));

Step 5: Refine and enjoy!

- Choosing base layers
 - OpenStreetMap
 - Bing aerials
 - MapBox?
- Refreshing data
- Playing with styling
- Seek better hosting

http://pdx.be/wpcint

https://github.com/pdxmele/wpc-gis-inventory

QGIS programming environment demo

Jack's applications

- Creating and improving bicycling data
- Writing tools to assist in the process
 - Cracking closed systems
 - Coverage mapping with KML
 - Capture the flags finding missed segments

GRASS GIS Graphical Modeler

Graphical Modeler (exports to Python) Better in Version 7 Little help for novices

r.timestamp	tASS module to the model	
r.to.rast3		
r.to.rast3		
r.to.rast3elev	vector map layer.	
r.to.rast3elev		
r.to.vect		Model
r.to.vect		v.db.addc
r.topidx		
r.topmodel		
r.transect		
r.univar		
r.univar.sh	Capcel	OK
r.univar.sh	Cancer	UN

Grass Python Scripting

```
File Edit View Search Terminal Help
>>>
>>>
>>>
>>>
>>> import grass.script as grass
>>> for map in grass.list strings('vect'):
        print map
Curb Ramps@katie
street segment nodes@katie
Curb ramps concord@katie
street segments@katie
NorthConcordStreetSegments@katie
streets conflated@katie
concordextent@katie
streetsegments concord@katie
network@katie
sw clip@katie
pl st segments@katie
>>> guit()
GRASS 6.4.1 (OregonNorthNad83 2269):/home/Grass/Pvthon >
```

Refer to the Programmer's Manual http://grass.osgeo.org/programming6/index.htm Test within Grass Environment

Exploring open source programming

- Open source programming can be challenging at first, but help is available: come visit us at the Jam! We meet Mondays from 4-6 pm in CH469.
- Questions?